M1. (a) Ability/power of an atom/element/nucleus to withdraw electron density or electron cloud or a pair of electrons (towards itself);

Not withdraw an electron
If ref to ionic, metallic , imf etc then $C E=0$

From a covalent bond or from a shared pair of electrons;
Not distort
Not remove electrons
(b) Van der Waals/ vdw/London/ temporary (induced) dipole/ dispersion forces;

Hydrogen bonds/H bonds;
Not just hydrogen
(c) (Large) electronegativity difference between $\mathrm{N}+\mathrm{H} /$ difference of $0.9 / \mathrm{N}$ very electronegative;

Insufficient to say $N=3.1$ and $H=2.1$

Forms $\mathrm{N} \delta-$ / $\mathrm{H} \delta+$ or dipole explained in words;
Not N becomes (fully) negative or vice versa

Lone pair on N attracts/forms weak bonds with $\mathrm{H}(\delta+)$;
QWC
Can score M2 and 3 from a diagram
(d) Co-ordinate/dative;

If not correct then $C E=0$. If covalent/blank mark on.

Both electrons/ lone pair (on $\mathrm{P} / \mathrm{PH}_{3}$)
Not lone pair on hydrogen

Shares/donated from $\mathrm{P}\left(\mathrm{H}_{3}\right) /$ to $\mathrm{H}(\delta+)$;
(e) 3 bonds and 1 lp attached to As;

Must label H and As atoms
Accept distorted tetrahedral not bent tetrahedral

Pyramidal/tetrahedral/ trigonal pyramidal;
Not bipyramidal/triangular
(f) (Only) weak Van der Waals forces between molecules $/ \mathrm{AsH}_{3}$ has weaker IMF /ammonia has hydrogen bonding/ more energy needed to break IMF's in ammonia/ Van der Waals weaker than H bonds;

Accept has no H bonds.
Ignore dp-dp in AsH_{3} provided ammonia has stronger IMF. If between atoms mentioned $C E=0$
Break bonds CE $=0$

M2. (a) tendency / strength / ability / power of an atom / element / nucleus to attract / pull / withdraw electrons / e - density / bonding pair / shared pair
in a covalent bond
(b) (i) $\mathrm{F}_{2}=$ van der Waals' / induced/temporary dipole-dipole / dispersion / London forces
$\mathrm{CH}_{3} \mathrm{~F}$ dipole-dipole
(not just 'dipole')

Page 3

$$
\begin{aligned}
\mathrm{HF} & =\quad \text { hydrogen bonding } \\
& \text { (not just 'H' / 'hydrogen') }
\end{aligned}
$$

(ii) large difference in electronegativity between H and F / F most/very/much more electronegative / values '4' \& '2.1' quoted (not just 'higher')
${ }^{\delta}+\mathrm{H}-\mathrm{F}^{\delta-}$ dipole created or dipole clearly implied (accept arguments such as 'uneven charge in bond'/ 'polar bond' \therefore F slightly negative / H slightly positive)
attraction/bond formed between $\delta+\mathrm{H}$ and lone pair on F (M2 / M3 may be scored from a diagram) (CE if full charges shown - lose M2 and M3)
(c) (i) van der Waals' / induced/temporary dipole-dipole / dispersion / London forces / attractions
(ignore references to dipole-dipole)
increase with the increasing $M_{r} /$ size / mass / N^{0} of $\mathrm{e}^{-} /$size of e^{-}cloud (in the hydrogen halides)
(if ionic, or if 'covalent bonds broken' $=C E=0$)
(mark M1 and M2 separately)
(ii) hydrogen bonding stronger than van der Waals' attraction/forces (accept hydrogen bonding is very strong / strongest) (accept arguments such as 'HF has H-bonds, others only have van der Waals')
(not just 'HF has H-bonding')

M3.A

M4. (a) (i) Covalent (1)
(ii) Co-ordinate (1) (or dative)
(iii) Both / two / pair electrons come from nitrogen (1)
(iv) 4 bonding / electron pairs (1)
repel equally (1)
OR are identical
as far apart as possible (1)
OR to position of minimum repulsion
tetrahedron (1)
(b) Power (or ability) of an element / atom to attract electron pair/electrons/ an electron/electron density (1)
in a covalent bond (1)
Allow attract from, withdraw in, do not allow remove from, withdraw from.
(c) (i) Electron deficient (1)

Or small, slight, partial positive charge
(ii) $\mathrm{H}<\mathrm{N}(1)$

M5. (a) Oxygen more/very/highly electronegative (than hydrogen) OR oxygen has stronger attraction for bonding electrons / bonding electrons drawn towards oxygen;
causes higher e^{-}density round oxygen atom / causes H^{++} O^{s};
(b) van der Waals' forces between oxygen molecules;

Hydrogen bonding between methanol molecules;

H-B stronger than van der Waals' OR stronger IMF in methanol;
(if dipole-dipole forces in O_{2} or methanol, allow comparison, hence max 2)
(if ionic/covalent etc. max 1)
(mention of bond break $=C E=0$)

M6. (a) (i) Electronegativity (difference) or suitable description (1)
Accept F and Cl are highly electronegative
Not both atoms are highly electronegative
(ii) $\mathrm{HF}=$ hydrogen bonding (1)
$\mathrm{HCl}=$ (permanent) dipole-dipole bonding or even van de Waals' (1) Hydrogen bonding stronger / is the strongest IMF (1)

Accept a statement that HF must have the stronger IMF, even if no IMFs identified
The explanation must be based on intermolecular forces/attractions
Note: if the explanation is clearly intramolecular $=C E$
(b) Electron pair or lone pair donated (1)

Do not accept 'donation of electrons'
From chloride ion to Al or AlCl_{3} (1)

M1 can be earned by a general explanation of coordinate bonding, even if the electron pair is said to come from Al. The second mark, M2, is for this specific bond Ignore missing charge
(c)

(1)
PCl_{4}^{+}

(1)
PCl_{5} shown as trigonal bipyramid [Look for: ONE solid linear CI-P-Cl bond]

Bond Angle(s) 90° and 120° (1)
$\mathrm{PCl}_{4}{ }^{+}$shown as tetrahedral NO solid linear CI-P-Cl bonds]

