M1.		 (a) Ability/power of an atom/element/nucleus to withdraw electron density or electron cloud or a pair of electrons (towards itself); Not withdraw an electron If ref to ionic, metallic, imf etc then CE = 0 	1
		From a <u>covalent bond</u> or from a shared pair of electrons; <i>Not distort</i> <i>Not remove electrons</i>	1
	(b)	Van der Waals/ vdw/London/ <u>temporary</u> (induced) dipole/ dispersion forces;	1
		Hydrogen bonds/H bonds; <i>Not just hydrogen</i>	1
	(c)	(Large) electronegativity difference between N + H/ difference of 0.9/ N very electronegative; Insufficient to say N= 3.1 and H = 2.1	1
		Forms N δ– / H δ+ or dipole explained in words; Not N becomes (fully) negative or vice versa	1
		<u>Lone pair on N</u> attracts/forms weak bonds with H (δ+); QWC Can score M2 and 3 from a diagram	1
	(d)	Co-ordinate/dative; If not correct then CE = 0. If covalent/blank mark on.	
		Both electrons/ lone pair (on P/PH₃) Not lone pair on hydrogen	1
		Shares/donated from P(H ₃)/ to H(δ +);	1

3 bonds and 1 lp attached to As; (e) Must label H and As atoms Accept distorted tetrahedral not bent tetrahedral 1 Pyramidal/tetrahedral/ trigonal pyramidal; Not bipyramidal/triangular 1 (f) (Only) weak Van der Waals forces between molecules /AsH₃ has weaker IMF /ammonia has hydrogen bonding/ more energy needed to break IMF's in ammonia/ Van der Waals weaker than H bonds; Accept has no H bonds. Ignore dp-dp in AsH₃ provided ammonia has stronger IMF. *If between atoms mentioned CE=0* Break bonds CE = 01

1

1

1

1

[14]

(g) $4AsCl_3 + 3NaBH_4 \rightarrow 4AsH_3 + 3NaCl + 3BCl_3;$ Accept multiples

M2. (a) tendency / strength / ability / power of an <u>atom / element / nucleus</u> to attract / pull / withdraw electrons / e - density / bonding pair / shared pair
in a <u>covalent</u> bond
(b) (i) F₂ = van der Waals' / induced/temporary dipole-dipole / dispersion / London forces
CH₃F dipole-dipole (not just 'dipole')

		HF = hydrogen bonding (not just 'H' / 'hydrogen')	1
			1
	(ii)	large difference in electronegativity between H and F / F most/very/much more electronegative / values '4' & '2.1' quoted (not just 'high <u>er'</u>)	1
		[™] H-F [™] dipole created or dipole clearly implied (accept arguments such as 'uneven charge in bond'/ 'polar bond' ∴ F slightly negative / H slightly positive)	1
		attraction/bond formed between δ+H and lone pair on F (M2 / M3 may be scored from a diagram) (CE if full charges shown - lose M2 and M3)	1
(c)	(i)	van der Waals' / induced/temporary dipole-dipole / dispersion / London forces / attractions <i>(ignore references to dipole-dipole)</i>	1
		increase with the increasing M, / size / mass / N° of e ⁻ / size of e ⁻ cloud (in the hydrogen halides) <i>(if ionic, or if 'covalent bonds broken' = CE = 0)</i> <i>(mark M1 and M2 separately)</i>	1
	(ii)	hydrogen bonding stronger than van der Waals' attraction/forces (accept hydrogen bonding is very strong / strongest) (accept arguments such as 'HF has H-bonds, others <u>only</u> have van der Waals') (not just 'HF has H-bonding')	1

1

M4.

- (a) (i) Covalent **(1)**
 - (ii) Co-ordinate **(1)** (or dative)
 - (iii) Both / two / pair electrons come from nitrogen (1)

(iv) 4 bonding / electron pairs (1)

repel equally (1) OR are identical

as far apart as possible **(1)** OR to position of minimum repulsion

tetrahedron (1)

(b) Power (or ability) of an element / atom to attract electron pair/electrons/ an electron/electron density (1)

in a covalent bond **(1)** Allow attract from, withdraw in, do not allow remove from, withdraw from.

(c) (i) Electron deficient (1) Or small, slight, partial positive charge

(ii) H < N **(1)**

[11]

7

2

2

M5.		 Oxygen more/very/highly electronegative (than hydrogen) OR oxygen has stronger attraction for <u>bonding</u> electrons / <u>bonding</u> electrons drawn towards oxygen; 	
		olocitono dravin toviardo oxygon,	1
		causes higher e⁻ density round oxygen atom / causes Hր Oր;	
			1
	(b)	van der Waals' forces between oxygen <u>molecules;</u>	1
		Hydrogen bonding between methanol molecules;	1
		H-B stronger than van der Waals' <i>OR</i> stronger IMF in methanol;	
		(if dipole-dipole forces in O₂ or methanol, allow comparison, hence max 2)	
		(if ionic/covalent etc. max 1)	
		(mention of bond break = $CE = 0$)	1

[5]

4

M6.(a)(i)Electronegativity (difference) or suitable description (1)Accept F and Cl are highly electronegative
Not both atoms are highly electronegative

- (ii) HF = hydrogen bonding (1) HCl = (permanent) dipole-dipole bonding or even van de Waals' (1) Hydrogen bonding stronger / is the strongest IMF (1) Accept a statement that HF must have the stronger IMF, even if no IMFs identified The explanation must be based on <u>intermolecular</u> forces/attractions Note: if the explanation is <u>clearly intramolecular</u> = CE
- (b) Electron <u>pair</u> or lone <u>pair</u> donated (1) Do not accept 'donation of electrons'

From chloride ion to Al or AlCl₃ (1)

M1 can be earned by a general explanation of coordinate bonding, even if the electron pair is said to come from AI. The second mark, M2, is for this specific bond Ignore missing charge

(c)

PCI₅ shown as trigonal bipyramid [Look for: ONE solid linear CI-P-CI bond]

NO solid linear CI-P-CI bonds] Bond Angle(s) 90° and 120° (1)

Bond angle(s) 109 or 109.5° (1)

PCl₄⁺ shown as tetrahedral

[10]

2

4